#include #include #include #include #include #include #include #include #include "dcpu16.h" /* * emulates the DCPU16 system from http://0x10c.com/doc/dcpu-16.txt * * I couldn't remember ever implementing an emulator before, so this * happened. As such, consider this a toy in progress. * There are likely many improvable aspects. * * Justin Wind * 2012 04 05 - implementation started * 2012 04 06 - first functionality achieved * 2012 04 09 - minor cleanups * 2012 04 10 - moved cli to separate module * 2012 04 12 - added basic callback support for address accesses * 2012 05 05 - start of v1.7 revisions * 2012 05 08 - v1.7 revisions mostly complete * * TODO * !! v1.7 bit-shift and signed opcodes need to be reviewed/finished * !! v1.7 hardware interface needs to be finished * !! v1.7 interrupts need to be finished * change api to print into buffers rather than stdio * refactor opcode functiontables into switch statements * let callbacks determine whether to override events, or just observe * sort init callbacks by base addr, to call in-order * make all callbacks register addr range of interest */ static const char * const src_id_ = "$Id$"; #define OPCODE_BASIC_BITS 5 #define OPCODE_OPERAND_B_BITS 5 #define OPCODE_OPERAND_A_BITS 6 static const char * const regnames_ = "ABCXYZIJ"; /* some default warning and debug reporting functions, which can be overridden by clients */ #define WARN(...) do { if (warn_cb_) warn_cb_(__VA_ARGS__); } while (0) static inline void warn_(char *fmt, ...) __attribute__((format(printf, 1, 2))); static inline void warn_(char *fmt, ...) { va_list ap; fprintf(stderr, "[warning] "); va_start(ap, fmt); vfprintf(stderr, fmt, ap); va_end(ap); fprintf(stderr, "\n"); fflush(stderr); } static void (*warn_cb_)(char *fmt, ...) = warn_; void dcpu16_warn_cb_set(void (*fn)(char *fmt, ...)) { warn_cb_ = fn; } #ifdef DEBUG #define TRACE(...) do { if (trace_cb_) trace_cb_(__VA_ARGS__); } while (0) static inline void trace_(char *fmt, ...) __attribute__((format(printf, 1, 2))); static inline void trace_(char *fmt, ...) { va_list ap; fprintf(stdout, "[debug] "); va_start(ap, fmt); vfprintf(stdout, fmt, ap); va_end(ap); fprintf(stdout, "\n"); fflush(stdout); } #else /* DEBUG */ #define TRACE(...) do {} while(0) #endif /* DEBUG */ static void (*trace_cb_)(char *fmt, ...) = #ifdef DEBUG trace_ #else /* DEBUG */ NULL #endif ; void dcpu16_trace_cb_set(void (*fn)(char *fmt, ...)) { trace_cb_ = fn; } /* acct_event_ * invokes callbacks for specified event */ static inline void acct_event_(struct dcpu16 *vm, dcpu16_acct_event ev, DCPU16_WORD addr) { struct dcpu16_acct_cb *cb = vm->cb_table_; size_t i; for (i = 0; i < vm->cb_table_entries_; i++) { if ( (cb[i].mask & ev) ) cb[i].fn(vm, ev, addr, cb[i].data); } } /* convert register name to index into register array */ static inline off_t reg_index_(int reg) { return strchr(regnames_, reg) - regnames_; } /* add an entry to the interrupt queue */ static int interrupt_enqueue_(struct dcpu16 *d, DCPU16_WORD message) { d->interrupts_[d->interrupts_tail_] = message; d->interrupts_tail_ += 1; d->interrupts_tail_ %= DCPU16_INTERRUPT_QUEUE_SIZE; if (d->interrupts_tail_ == d->interrupts_head_) { d->on_fire_ = 1; WARN("interrupt queue overflow (system is now on fire)"); return -1; } return 0; } static DCPU16_WORD interrupt_dequeue_(struct dcpu16 *d) { DCPU16_WORD message; if (d->interrupts_tail_ == d->interrupts_head_) { WARN("interrupt underflow"); return 0; } message = d->interrupts_[d->interrupts_head_]; d->interrupts_head_ += 1; d->interrupts_head_ %= DCPU16_INTERRUPT_QUEUE_SIZE; return message; } /* value_decode_ * sets *v to be the address of the represented value * value_is_a is 0 for b, 1 for a, alters behavior of some operands * value_data is 'nextword' for this operand, ignored if unused * workv is buffer to use to accumulate literal value into, before use. one exists for either potential instruction operand * e_addr is set to a referenced address, for accounting callback * pc_adjust is set to how to change the program counter * stack_adjust is set to how to change the stack pointer * cycles is set to number of cycles spent looking up operand * * zero all adjustables before decoding first operand, and pass in these values when * decoding next operand.. * */ static inline void value_decode_(struct dcpu16 *d, DCPU16_WORD value, unsigned int value_is_a, DCPU16_WORD value_data, DCPU16_WORD *work_v, DCPU16_WORD **v, DCPU16_WORD *e_addr, short *pc_adjust, short *sp_adjust, unsigned int *cycle_adjust) { assert(value <= 0x3f); DCPU16_WORD pc = (DCPU16_WORD)(d->pc + *pc_adjust), sp = (DCPU16_WORD)(d->sp + *sp_adjust); TRACE("%s: pc:0x%04x sp:0x%04x value_data:0x%04x\n", __func__, pc, sp, value_data); if (value <= 0x07) { /* register */ *v = d->reg + value; TRACE("%s>> %c (0x%04x)", __func__, regnames_[value], **v); return; } if (value <= 0x0f) { /* [register] */ *v = &(d->ram[ d->reg[value & 0x07] ]); *e_addr = d->reg[value & 0x07]; TRACE("%s>> [%c] [0x%04x] (0x%04x)", __func__, regnames_[value & 0x07], d->reg[value & 0x07], **v); return; } if (value <= 0x17) { /* [next word + register] */ *pc_adjust += 1; /* consume next word */ *cycle_adjust += 1; *e_addr = value_data + d->reg[value & 0x07]; *v = d->ram + *e_addr; TRACE("%s>> [nextword + %c] [0x%04x + 0x%04x] (0x%04x)", __func__, regnames_[value & 0x07], value_data, d->reg[value & 0x07], **v); return; } switch (value) { case 0x18: /* PUSH/[--SP] or POP/[SP++] */ if (value_is_a == 0) { /* b */ *v = &(d->ram[sp - 1]); *sp_adjust -= 1; *e_addr = sp - 1; TRACE("%s>> PUSH [0x%04x] (0x%04x)", __func__, sp - 1, **v); } else { /* a */ *v = &(d->ram[sp]); *sp_adjust += 1; *e_addr = sp; TRACE("%s>> POP [0x%04x] (0x%04x)", __func__, sp, **v); } break; case 0x19: /* PEEK/[SP] */ *v = &(d->ram[sp]); *e_addr = sp; TRACE("%s>> PEEK [0x%04x] (0x%04x)", __func__, sp, **v); break; case 0x1a: /* PICK n */ *pc_adjust += 1; *cycle_adjust += 1; *e_addr = sp + value_data; *v = d->ram + *e_addr; TRACE("%s>> PICK 0x%04x [0x%04x] (0x%04x)", __func__, value_data, sp + value_data, **v); break; case 0x1b: /* SP */ *v = &(d->sp); TRACE("%s>> %s (0x%04x)", __func__, "SP", **v); break; case 0x1c: /* PC */ *v = &(d->pc); TRACE("%s>> %s (0x%04x)", __func__, "PC", **v); break; case 0x1d: /* EX */ *v = &(d->ex); TRACE("%s>> %s (0x%04x)", __func__, "EX", **v); break; case 0x1e: /* [next word] / [[pc++]] */ *pc_adjust += 1; *cycle_adjust += 1; *e_addr = value_data; *v = d->ram + *e_addr; TRACE("%s>> [nextword] [0x%04x] (0x%04x)", __func__, value_data, **v); break; case 0x1f: /* next word (literal) / [pc++] */ *pc_adjust += 1; *cycle_adjust += 1; *work_v = value_data; *v = work_v; TRACE("%s>> nextword (0x%04x)", __func__, **v); break; default: /* 0x20-0x3f: literal values 0xffff-0x1e */ *work_v = (value & 0x1f) - 1; *v = work_v; TRACE("%s>> literal (0x%04x)", __func__, **v); } } #define OPCODE_NAME_LEN 16 struct opcode_entry { unsigned short value; char name[OPCODE_NAME_LEN]; void (*impl)(struct dcpu16 *, DCPU16_WORD, DCPU16_WORD, DCPU16_WORD, DCPU16_WORD); }; /* messy boilerplate for opcode handlers */ /* opcode doesn't adjust its own PC, the step function which invoked it handles that */ /* opcode does adjust stack and cycle count */ #define OP_IMPL(x) static void op_##x(struct dcpu16 *d, DCPU16_WORD val_b, DCPU16_WORD val_b_data, DCPU16_WORD val_a, DCPU16_WORD val_a_data) #define OP_TYPE(op_type) DCPU16_WORD *a, *b;\ DCPU16_WORD ev_a_addr = 0, ev_b_addr = 0;\ short pc_adjust = 0, sp_adjust = 0;\ unsigned int cycle_adjust = 0;\ do {\ op_type;\ value_decode_(d, val_a, 1, val_a_data,\ &d->reg_work_[1], &a, &ev_a_addr,\ &pc_adjust, &sp_adjust, &cycle_adjust);\ d->sp += sp_adjust;\ d->cycle += cycle_adjust;\ } while (0) #define OP_NBI_ (void)val_b, (void)b, (void)ev_b_addr, (void)val_b_data #define OP_BASIC_ value_decode_(d, val_b, 0, val_b_data,\ &d->reg_work_[0], &b, &ev_b_addr,\ &pc_adjust, &sp_adjust, &cycle_adjust) #define OP_BASIC(x) OP_TYPE(OP_BASIC_) #define OP_NBI(x) OP_TYPE(OP_NBI_) /* after invoking one of these header macros, the instruction and operands will have been decoded, and the control registers have been adjusted to the next instruction et cetera */ /* accounting helpers, these fire off the related callbacks for memory reads, memory writes, and execution of reserved instructions */ #define ACCT_R(addr) do { acct_event_(d, DCPU16_ACCT_EV_READ, addr); } while (0) #define ACCT_W(addr) do { acct_event_(d, DCPU16_ACCT_EV_WRITE, addr); } while (0) #define ACCT_ILL(addr) do { acct_event_(d, DCPU16_ACCT_EV_NOP, addr); } while (0) /* extended opcodes */ /* N.B. this next function currently decodes values -- id est, it is an opcode processing terminus; however, if 'future instruction set expansion' happens, this will probably need to behave more like the OP_IMPL(_nbi_) function which invoked it, if those instructions have zero or differently styled operands. */ OP_IMPL(nbi__reserved_) { OP_NBI(nbi__reserved_); /* reserved for future expansion */ /* fire an illegal instruction event for current instruction */ DCPU16_WORD future_opcode = (d->ram[d->pc - pc_adjust] >> (OPCODE_BASIC_BITS + OPCODE_OPERAND_B_BITS)); WARN("reserved future opcode 0x%04x invoked", future_opcode); ACCT_ILL(d->pc - pc_adjust); } OP_IMPL(nbi_jsr) { OP_NBI(nbi_jsr); /* pushes the address of the next instruction to the stack, then sets PC to a */ ACCT_R(ev_a_addr); d->ram[ --d->sp ] = d->pc; d->pc = *a; d->cycle += 2; ACCT_W(d->sp + 1); } OP_IMPL(nbi__reserved2_) { OP_NBI(nbi__reserved2_); /* reserved */ WARN("reserved nbi opcode invoked"); ACCT_ILL(d->pc - pc_adjust); } OP_IMPL(nbi_int) { OP_NBI(nbi_int); ACCT_R(ev_a_addr); if (d->ia) { if ( interrupt_enqueue_(d, *a) ) { WARN("failed to queue interrupt"); return; } if (d->interrupts_deferred_) return; d->interrupts_deferred_ = 1; d->ram[--d->sp] = d->pc; d->ram[--d->sp] = d->reg[reg_index_('A')]; d->pc = d->ia; d->reg[0] = *a; } d->cycle += 4; } OP_IMPL(nbi_iag) { OP_NBI(nbi_iag); *a = d->ia; ACCT_W(ev_a_addr); } OP_IMPL(nbi_ias) { OP_NBI(nbi_ias); d->ia = *a; ACCT_R(ev_a_addr); } /* does this just ignore its operand? */ OP_IMPL(nbi_rfi) { OP_NBI(nbi_rfi); d->interrupts_deferred_ = 0; d->reg[reg_index_('A')] = d->ram[d->sp++]; d->pc = d->ram[d->sp++]; } OP_IMPL(nbi_iaq) { OP_NBI(nbi_iaq); if (*a) { d->interrupts_deferred_ = 1; } else { d->interrupts_deferred_ = 0; } ACCT_R(ev_a_addr); } OP_IMPL(nbi_hwn) { OP_NBI(nbi_hwn); ACCT_W(ev_a_addr); *a = d->hw_table_entries_; d->cycle += 2; } OP_IMPL(nbi_hwq) { OP_NBI(nbi_hwq); ACCT_R(ev_a_addr); if (*a >= d->hw_table_entries_) { WARN("hardware query for non-extant device 0x%04x", *a); d->reg[reg_index_('A')] = 0; d->reg[reg_index_('B')] = 0; d->reg[reg_index_('C')] = 0; d->reg[reg_index_('X')] = 0; d->reg[reg_index_('Y')] = 0; return; } d->reg[reg_index_('A')] = d->hw_table_[*a].id_l; d->reg[reg_index_('B')] = d->hw_table_[*a].id_h; d->reg[reg_index_('C')] = d->hw_table_[*a].ver; d->reg[reg_index_('X')] = d->hw_table_[*a].mfg_l; d->reg[reg_index_('Y')] = d->hw_table_[*a].mfg_h; d->cycle += 4; } OP_IMPL(nbi_hwi) { OP_NBI(nbi_hwi); ACCT_R(ev_a_addr); if (*a > d->hw_table_entries_) { WARN("interrupt for non-extant device 0x%04x", *a); return; } d->cycle += 4; d->hw_table_[*a].int_fn(d, d->hw_table_[*a].data); } OP_IMPL(nbi_hcf) { OP_NBI(nbi_hcf); ACCT_R(ev_a_addr); d->on_fire_ = 1; WARN("system on fire"); d->cycle += 9; } static const struct opcode_entry opcode_nbi_entries[] = { {0x00, "(reserved)", op_nbi__reserved_}, {0x01, "JSR", op_nbi_jsr}, {0x02, "(reserved)", op_nbi__reserved2_}, {0x03, "(reserved)", op_nbi__reserved2_}, {0x04, "(reserved)", op_nbi__reserved2_}, {0x05, "(reserved)", op_nbi__reserved2_}, {0x06, "(reserved)", op_nbi__reserved2_}, {0x07, "HCF", op_nbi_hcf}, /* undocumented */ {0x08, "INT", op_nbi_int}, {0x09, "IAG", op_nbi_iag}, {0x0a, "IAS", op_nbi_ias}, {0x0b, "RFI", op_nbi_rfi}, {0x0c, "IAQ", op_nbi_iaq}, {0x0d, "(reserved)", op_nbi__reserved2_}, {0x0e, "(reserved)", op_nbi__reserved2_}, {0x0f, "(reserved)", op_nbi__reserved2_}, {0x10, "HWN", op_nbi_hwn}, {0x11, "HWQ", op_nbi_hwq}, {0x12, "HWI", op_nbi_hwi}, {0x13, "(reserved)", op_nbi__reserved2_}, {0x00, "", NULL} }; #define OPCODE_NBI_MAX (((sizeof(opcode_nbi_entries)) / (sizeof(struct opcode_entry))) - 1) /* basic opcodes */ /* N.B. the following function does not decode values, (thus does not advance sp) Decoding is handled by the secondary opcode functions it calls. */ OP_IMPL(_nbi_) { /* non-basic instruction */ /* don't do normal value decoding here */ DCPU16_WORD nbi_opcode = val_b; const struct opcode_entry *e = opcode_nbi_entries; (void)val_b_data; e = opcode_nbi_entries + ( (nbi_opcode < OPCODE_NBI_MAX) ? nbi_opcode : (OPCODE_NBI_MAX - 1) ); assert(e->impl != NULL); TRACE(">> %s 0x%04x", e->name, val_b); e->impl(d, 0, 0, val_a, val_a_data); } OP_IMPL(set) { OP_BASIC(set); /* sets b to a */ ACCT_R(ev_a_addr); /* if b is a literal, it's aimed at a scratch register, so it's fine to update, as it won't have any effect. */ *b = *a; d->cycle += 1; ACCT_W(ev_b_addr); } OP_IMPL(add) { OP_BASIC(add); /* sets b to b+a, sets EX to 0x0001 if there's an overflow, 0x0 otherwise */ unsigned int acc = *b + *a; ACCT_R(ev_b_addr); ACCT_R(ev_a_addr); *b = acc; d->ex = (acc > 0xffff); d->cycle += 2; ACCT_W(ev_b_addr); } OP_IMPL(sub) { OP_BASIC(sub); /* sets b to b-a, sets EX to 0xffff if there's an underflow, 0x0 otherwise */ unsigned int acc = *b - *a; ACCT_R(ev_b_addr); ACCT_R(ev_a_addr); *b = acc; d->ex = (acc > 0xffff); d->cycle += 2; ACCT_W(ev_b_addr); } OP_IMPL(mul) { OP_BASIC(mul); /* sets b to b*a, unsigned, sets EX to ((b*a)>>16)&0xffff */ unsigned int acc = *b * *a; ACCT_R(ev_b_addr); ACCT_R(ev_a_addr); *b = acc; d->ex = acc >> 16; d->cycle += 2; ACCT_W(ev_b_addr); } OP_IMPL(mli) { OP_BASIC(mli); /* sets b to b*a, signed */ int acc = (short)*b * (short)*a; ACCT_R(ev_b_addr); ACCT_R(ev_a_addr); *b = acc; d->ex = acc >> 16; d->cycle += 2; ACCT_W(ev_b_addr); } OP_IMPL(div) { OP_BASIC(div); /* sets b to b/a, sets EX to ((b<<16)/a)&0xffff. if a==0, sets a and EX to 0 instead. */ ACCT_R(ev_b_addr); ACCT_R(ev_a_addr); if (*a == 0) { *b = 0; d->ex = 0; } else { *b = *b / *a; d->ex = (*b << 16) / *a; } d->cycle += 3; ACCT_W(ev_b_addr); } OP_IMPL(dvi) { OP_BASIC(dvi); /* sets b to b/a, signed, round towards 0 */ ACCT_R(ev_b_addr); ACCT_R(ev_a_addr); if (*a == 0) { *b = 0; d->ex = 0; } else { *b = (short)*b / (short)*a; d->ex = (short)(*b << 16) / (short)*a; } d->cycle += 3; ACCT_W(ev_b_addr); } OP_IMPL(mod) { OP_BASIC(mod); /* sets b to b%a. if a==0, sets b to 0 instead. */ ACCT_R(ev_b_addr); ACCT_R(ev_a_addr); if (*a == 0) { *b = 0; } else { *b = *b % *a; } d->cycle += 3; ACCT_W(ev_a_addr); } OP_IMPL(mdi) { OP_BASIC(mdi); /* sets b to b%a, signed */ ACCT_R(ev_b_addr); ACCT_R(ev_a_addr); if (*a == 0) { *b = 0; } else { *b = (short)*b % (short)*a; } d->cycle += 3; ACCT_W(ev_b_addr); } OP_IMPL(and) { OP_BASIC(and); /* sets b to b&a */ ACCT_R(ev_b_addr); ACCT_R(ev_a_addr); *b = *b & *a; d->cycle += 1; ACCT_W(ev_b_addr); } OP_IMPL(bor) { OP_BASIC(bor); /* sets b to b|a */ ACCT_R(ev_b_addr); ACCT_R(ev_a_addr); *b = *b | *a; d->cycle += 1; ACCT_W(ev_b_addr); } OP_IMPL(xor) { OP_BASIC(xor); /* sets b to b^a */ ACCT_R(ev_b_addr); ACCT_R(ev_a_addr); *b = *b ^ *a; d->cycle += 1; ACCT_W(ev_b_addr); } OP_IMPL(shr) { OP_BASIC(shr); /* sets b to b>>>a, sets EX to ((b<<16)>>a)&0xffff */ unsigned int acc = *b >> *a; ACCT_R(ev_b_addr); ACCT_R(ev_a_addr); *b = acc & 0xffff; d->ex = (*b << 16) >> *a; d->cycle += 2; WARN("IMPLEMENT"); ACCT_W(ev_b_addr); } OP_IMPL(asr) { OP_BASIC(asr); /* sets b to b>>a, sets EX to ((b<<16)>>>a)&0xffff (arithmetic shift) (treats b as signed) */ unsigned int acc = *b << *a; ACCT_R(ev_b_addr); ACCT_R(ev_a_addr); *b = acc & 0xffff; d->ex = (*b << 16) >> *a; d->cycle += 2; WARN("IMPLEMENT"); ACCT_W(ev_b_addr); } OP_IMPL(shl) { OP_BASIC(shl); /* sets b to b<>16)&0xffff */ unsigned int acc = *b << *a; ACCT_R(ev_b_addr); ACCT_R(ev_a_addr); *b = acc; d->ex = acc >> 16; d->cycle += 2; ACCT_W(ev_b_addr); } OP_IMPL(ifb) { OP_BASIC(ifb); /* performs next instruction only if (b&a)!=0 */ ACCT_R(ev_b_addr); ACCT_R(ev_a_addr); if ((*b & *a) != 0) { /* */ } else { d->skip_ = 1; d->cycle += 1; } d->cycle += 2; } OP_IMPL(ifc) { OP_BASIC(ifc); /* performs next instruction only if (b&a)==0 */ ACCT_R(ev_b_addr); ACCT_R(ev_a_addr); if ((*b & *a) == 0) { } else { d->skip_ = 1; d->cycle += 1; } d->cycle += 2; } OP_IMPL(ife) { OP_BASIC(ife); /* performs next instruction only if b==a */ ACCT_R(ev_b_addr); ACCT_R(ev_a_addr); if (*b == *a) { /* */ } else { d->skip_ = 1; d->cycle += 1; } d->cycle += 2; } OP_IMPL(ifn) { OP_BASIC(ifn); /* performs next instruction only if b!=a */ ACCT_R(ev_b_addr); ACCT_R(ev_a_addr); if (*b != *a) { /* */ } else { d->skip_ = 1; d->cycle++; } d->cycle += 2; } OP_IMPL(ifg) { OP_BASIC(ifg); /* performs next instruction only if b>a */ ACCT_R(ev_b_addr); ACCT_R(ev_a_addr); if (*b > *a) { /* */ } else { d->skip_ = 1; d->cycle++; } d->cycle += 2; } OP_IMPL(ifa) { OP_BASIC(ifa); /* performs next instruction only if b>a (signed) */ ACCT_R(ev_b_addr); ACCT_R(ev_a_addr); if (*b > *a) { /* */ } else { d->skip_ = 1; d->cycle += 1; } d->cycle += 2; } OP_IMPL(ifl) { OP_BASIC(ifl); /* performs next instruction only if bskip_ = 1; d->cycle++; } d->cycle += 2; } OP_IMPL(ifu) { OP_BASIC(ifu); /* performs next instruction only if bskip_ = 1; d->cycle += 1; } d->cycle += 2; } OP_IMPL(adx) { OP_BASIC(adx); /* sets b to b+a+EX, sets EX to 0x0001 if overflow, 0x0 otherwise */ unsigned int acc; ACCT_R(ev_b_addr); ACCT_R(ev_a_addr); acc = *b + *a + d->ex; *b = acc & 0xffff; if (acc > 0xffff) d->ex = 0x0001; else d->ex = 0x0000; d->cycle += 3; ACCT_W(ev_b_addr); } OP_IMPL(sbx) { OP_BASIC(sbx); /* sets b to b-a+EX, sets EX to 0xffff if underflow, 0x0 otherwise */ unsigned int acc; ACCT_R(ev_b_addr); ACCT_R(ev_a_addr); acc = *b - *a + d->ex; *b = acc & 0xffff; if (acc > 0xffff) d->ex = 0xffff; else d->ex = 0; d->cycle += 3; ACCT_W(ev_b_addr); } OP_IMPL(sti) { OP_BASIC(sti); /* sets b to a, then increases I and J by 1 */ ACCT_R(ev_b_addr); ACCT_R(ev_a_addr); *b = *a; d->reg[reg_index_('I')] += 1; d->reg[reg_index_('J')] += 1; d->cycle += 2; ACCT_W(ev_b_addr); } OP_IMPL(std) { OP_BASIC(std); /* sets b to a, then decreases I and J by 1 */ ACCT_R(ev_b_addr); ACCT_R(ev_a_addr); *b = *a; d->reg[reg_index_('I')] -= 1; d->reg[reg_index_('J')] -= 1; d->cycle += 2; ACCT_W(ev_b_addr); } OP_IMPL(_reserved_) { OP_BASIC(_reserved_); WARN("reserved opcode invoked"); ACCT_ILL(d->pc - pc_adjust); } static const struct opcode_entry opcode_basic_entries[] = { {0x00, "(nbi)", op__nbi_}, {0x01, "SET", op_set }, {0x02, "ADD", op_add }, {0x03, "SUB", op_sub }, {0x04, "MUL", op_mul }, {0x05, "MLI", op_mli }, {0x06, "DIV", op_div }, {0x07, "DVI", op_dvi }, {0x08, "MOD", op_mod }, {0x09, "MDI", op_mdi }, {0x0a, "AND", op_and }, {0x0b, "BOR", op_bor }, {0x0c, "XOR", op_xor }, {0x0d, "SHR", op_shr }, {0x0e, "ASR", op_asr }, {0x0f, "SHL", op_shl }, {0x10, "IFB", op_ifb }, {0x11, "IFC", op_ifc }, {0x12, "IFE", op_ife }, {0x13, "IFN", op_ifn }, {0x14, "IFG", op_ifg }, {0x15, "IFA", op_ifa }, {0x16, "IFL", op_ifl }, {0x17, "IFU", op_ifu }, {0x18, "(reserved)", op__reserved_ }, {0x19, "(reserved)", op__reserved_ }, {0x1a, "ADX", op_adx }, {0x1b, "SBX", op_sbx }, {0x1c, "(reserved)", op__reserved_ }, {0x1d, "(reserved)", op__reserved_ }, {0x1e, "STI", op_sti }, {0x1f, "STD", op_std }, {0x00, "", NULL } }; static inline void dump_operand_value_(DCPU16_WORD value, DCPU16_WORD nextword, unsigned int value_position) { if (value <= 0x07) { printf(" %c", regnames_[value]); } else if (value <= 0x0f) { printf(" [%c]", regnames_[value & 0x07]); } else if (value <= 0x17) { printf(" [0x%04x + %c]", nextword, regnames_[value & 0x07]); } else switch (value) { case 0x18: if (value_position == 0) { /* b */ printf(" PUSH"); } else { printf(" POP"); } break; case 0x19: printf(" PEEK"); break; case 0x1a: printf(" PICK 0x%04x", nextword); break; case 0x1b: printf(" SP"); break; case 0x1c: printf(" PC"); break; case 0x1d: printf(" EX"); break; case 0x1e: printf(" [0x%04x]", nextword); break; case 0x1f: printf(" 0x%04x", nextword); break; default: printf(" 0x%02x", value - 0x21); } } /* split a sequence of (one to three) words into the components of an instruction */ static inline void instruction_decode_(DCPU16_WORD *mem, DCPU16_WORD addr, DCPU16_WORD *opcode, DCPU16_WORD *b, DCPU16_WORD **b_data, DCPU16_WORD *a, DCPU16_WORD **a_data, DCPU16_WORD *instr_len) { *opcode = *a = *b = mem[addr]; *opcode = mem[addr] & ((1 << OPCODE_BASIC_BITS) - 1); *b = (mem[addr] >> OPCODE_BASIC_BITS) & ((1 << OPCODE_OPERAND_B_BITS) - 1); *a = (mem[addr] >> (OPCODE_BASIC_BITS + OPCODE_OPERAND_B_BITS)) & ((1 << OPCODE_OPERAND_A_BITS) - 1); *instr_len = 1; if ( (*b >= 0x10 && *b <= 0x17) || *b == 0x1e || *b == 0x1f ) { *b_data = mem + (DCPU16_WORD)(addr + *instr_len); TRACE("**b_data:%hu", **b_data); *instr_len += 1; } else { *b_data = NULL; } if ( (*opcode != 0x0000 || (*opcode == 0 && *b != 0x0000) ) && ( (*a >= 0x10 && *a <= 0x17) || *a == 0x1e || *a == 0x1f) ) { *a_data = mem + (DCPU16_WORD)(addr + *instr_len); TRACE("**a_data:%hu", **a_data); *instr_len += 1; } else { *a_data = NULL; } #if 0 TRACE("\n%s: [0x%04x]:0x%04x op:0x%02x b:0x%02x (b_data:0x%04x) a:0x%02x (a_data:0x%04x) len:0x%02x\n", __func__, addr, mem[addr], *opcode, *b, *b_data ? **b_data : 0, *a, *a_data ? **a_data : 0, *instr_len); #endif } /* dcpu16_mnemonify_buf print words as words */ DCPU16_WORD dcpu16_mnemonify_buf(DCPU16_WORD *buf) { DCPU16_WORD opcode, b, a, instr_len, *b_data, *a_data; const struct opcode_entry *e; instruction_decode_(buf, 0, &opcode, &b, &b_data, &a, &a_data, &instr_len); if (opcode == 0x0000) e = opcode_nbi_entries + ( (b < OPCODE_NBI_MAX) ? b : (OPCODE_NBI_MAX - 1) ); else e = opcode_basic_entries + opcode; printf("%s", e->name); if (opcode) { dump_operand_value_(b, b_data ? *b_data : 0, 0); printf(","); } if (opcode || b) { dump_operand_value_(a, a_data ? *a_data : 0, 1); } return instr_len; } /* dcpu16_disassemble_print print the words of the instruction at addr, followed by its assembly representation returns the length of the instruction in words */ DCPU16_WORD dcpu16_disassemble_print(struct dcpu16 *d, DCPU16_WORD addr) { DCPU16_WORD opcode, b, a, instr_len, i, *b_data, *a_data; DCPU16_WORD buf[3] = { d->ram[addr], d->ram[(DCPU16_WORD)(addr + 1)], d->ram[(DCPU16_WORD)(addr + 2)] }; unsigned int indent = 0; unsigned int partial = 0; if (!d) return 0; #if 0 /* Check the previous instruction, to see if this one should be indented. This check isn't foolproof, as preceeding addresses could be data which happen to match instructions.. */ for (i = 3; i; i--) { instruction_decode_(d->ram, (DCPU16_WORD)(addr - i), &opcode, &b, &b_data, &a, &a_data, &instr_len); if (instr_len > i) partial++; if (instr_len == i && (opcode >= 0x10 && opcode <= 0x17) ) { indent++; break; } } #endif /* just need instr_len */ instruction_decode_(d->ram, addr, &opcode, &b, &b_data, &a, &a_data, &instr_len); /* show the raw words */ printf("%04x", d->ram[addr]); for (i = 1; i < instr_len; i++) { printf(" %04x", d->ram[addr + i]); } /* align things neatly, show the instruction */ printf("%s%s ;%s%s", instr_len < 3 ? " " : "", instr_len < 2 ? " " : "", partial ? "*" : " ", indent ? " " : ""); dcpu16_mnemonify_buf(buf); return instr_len; } /* execute the next instruction */ void dcpu16_step(struct dcpu16 *d) { DCPU16_WORD opcode, b, a, instr_len, *b_data, *a_data; const struct opcode_entry *e; if (!d) return; acct_event_(d, DCPU16_ACCT_EV_CYCLE, d->pc); /* if we're currently servicing interrupts */ if (d->interrupts_deferred_ == 0) { /* and there are interrupts to be serviced */ if (d->interrupts_head_ != d->interrupts_tail_) { DCPU16_WORD message; message = interrupt_dequeue_(d); if (d->ia) { TRACE("servicing interrupt IA:0x%04x message:0x%04x \n", d->ia, message); /* then service the next interrupt */ d->interrupts_deferred_ = 1; d->ram[--d->sp] = d->pc; d->ram[--d->sp] = d->reg[reg_index_('A')]; d->pc = d->ia; d->reg[0] = message; } else { TRACE("ignoring interrupt IA:0"); } } } /* and make sure to execute an instruction after an interrupt */ instruction_decode_(d->ram, d->pc, &opcode, &b, &b_data, &a, &a_data, &instr_len); for (e = opcode_basic_entries; e->impl; e++) { if (e->value == opcode) { TRACE("%s>> %s 0x%04x, 0x%04x", __func__, e->name, b, a); e->impl(d, b, b_data ? *b_data : 0, a, a_data ? *a_data : 0); break; } } /* get ready for the next one */ d->pc += instr_len; /* and jump over next instr(s) if needed */ if (d->skip_) { instruction_decode_(d->ram, d->pc, &opcode, &b, &b_data, &a, &a_data, &instr_len); d->pc += instr_len; TRACE("++ SKIPPED %x words", instr_len); if (opcode >= 0x10 && opcode <= 0x17) { /* skipping a branch instruction? skip branch's skippable instruction as well */ d->cycle += 1; instruction_decode_(d->ram, d->pc, &opcode, &b, &b_data, &a, &a_data, &instr_len); d->pc += instr_len; TRACE("++ SKIPPED %x words", instr_len); } d->skip_ = 0; } } /* print the current state of the machine shows current cycle count, registers, and next instruction */ void dcpu16_state_print(struct dcpu16 *d) { unsigned int i; if (!d) return; printf(" "); for (i = 0; i < 8; i++) printf(" %c:0x%04x", regnames_[i], d->reg[i]); printf("\n"); printf("(0x%08llx) %2s:0x%04x %2s:0x%04x %2s:0x%04x %2s:0x%04x [%2s]:", d->cycle, "EX", d->ex, "SP", d->sp, "PC", d->pc, "IA", d->ia, "PC"); dcpu16_disassemble_print(d, d->pc); printf("\n"); } /* dcpu16_dump_ram * print raw ram contents from start to stop */ void dcpu16_dump_ram(struct dcpu16 *d, DCPU16_WORD start, DCPU16_WORD end) { unsigned int i, j; const unsigned int n = 8; /* words per line */ if (!d) return; for (i = start, j = 0; i <= end; i++, j++) { if (j % n == 0) printf("0x%04x:\t", i); printf(" %04x%s", d->ram[i], (j % n) == (n - 1) ? "\n" : ""); } if ((j % n) != (n - 1)) printf("\n"); } /* dcpu16_hw_add * registers new 'hardware' device with system */ int dcpu16_hw_add(struct dcpu16 *vm, struct dcpu16_hw *hw) { if (!vm || !hw) return -1; if (vm->hw_table_entries_ == vm->hw_table_allocated_) { size_t new_entries = vm->hw_table_allocated_ + 32; void *tmp_ptr = realloc(vm->hw_table_, new_entries * sizeof * (vm->hw_table_)); if (tmp_ptr == NULL) { fprintf(stderr, "%s():%s", "realloc", strerror(errno)); return -1; } vm->hw_table_ = tmp_ptr; vm->hw_table_allocated_ += 32; } memcpy(vm->hw_table_ + vm->hw_table_entries_, hw, sizeof *hw); vm->hw_table_entries_++; return 0; } /* dcpu16_acct_add * Register callback fn to be triggered whenever event matching any events * in bitwise mask occur. */ int dcpu16_acct_add(struct dcpu16 *vm, dcpu16_acct_event mask, dcpu16_ev_cb_t *fn, void *data) { struct dcpu16_acct_cb cb; cb.mask = mask; cb.fn = fn; cb.data = data; if (vm->cb_table_entries_ == vm->cb_table_allocated_) { size_t new_entries = vm->cb_table_allocated_ + 32; void *tmp_ptr = realloc(vm->cb_table_, new_entries * sizeof *(vm->cb_table_)); if (tmp_ptr == NULL) { fprintf(stderr, "%s():%s", "realloc", strerror(errno)); return -1; } vm->cb_table_ = tmp_ptr; vm->cb_table_allocated_ += 32; } memcpy(vm->cb_table_ + vm->cb_table_entries_, &cb, sizeof cb); vm->cb_table_entries_++; return 0; } /* dcpu16_reset * signals cpu to reset, clearing runstate and ram, then reload any init callbacks */ void dcpu16_reset(struct dcpu16 *d) { if (!d) return; d->cycle = 0; memset(d->reg, 0, sizeof d->reg); d->pc = 0; d->sp = 0; d->ex = 0; d->ia = 0; d->skip_ = 0; memset(d->ram, 0, sizeof d->ram); acct_event_(d, DCPU16_ACCT_EV_RESET, 0); } /* dcpu16_new * allocate a new dcpu16 instance */ struct dcpu16 *dcpu16_new(void) { struct dcpu16 *vm; vm = calloc(1, sizeof *vm); if (vm == NULL) WARN("%s: %s(%zu): %s", __func__, "calloc", strerror(errno)); return vm; } /* dcpu16_delete * release a dcpu16 instance */ void dcpu16_delete(struct dcpu16 **vm) { if (!vm || !*vm) return; free(*vm); *vm = NULL; }