#include #include #include #include #include #include #include #include #include "dcpu16.h" /* * emulates the DCPU16 system from http://0x10c.com/doc/dcpu-16.txt * * I couldn't remember ever implementing an emulator before, so this * happened. As such, consider this a toy in progress. * There are likely many improvable aspects. * * Justin Wind * 2012 04 05 - implementation started * 2012 04 06 - first functionality achieved * 2012 04 09 - minor cleanups * 2012 04 10 - moved cli to separate module * * TODO * drop checks for assigning to literals -- it won't affect anything anyhow * debug short literal decoding */ static const char * const src_id_ = "$Id$"; #define WORD DCPU16_WORD static const char regnames_[] = "ABCXYZIJ"; static unsigned int trace_mode_ = 0; /* spew overly verbose internals */ #define WARN(...) do { if (warn_cb_) warn_cb_(__VA_ARGS__); } while (0) static inline void warn_(char *fmt, ...) __attribute__((format(printf, 1, 2))); static inline void warn_(char *fmt, ...) { va_list ap; fprintf(stderr, "[warning] "); va_start(ap, fmt); vfprintf(stderr, fmt, ap); va_end(ap); fprintf(stderr, "\n"); fflush(stderr); } static void (*warn_cb_)(char *fmt, ...) = warn_; void dcpu16_warn_cb_set(void (*fn)(char *fmt, ...)) { warn_cb_ = fn; } #define TRACE(...) do { if (trace_cb_ && trace_mode_) trace_cb_(__VA_ARGS__); } while (0) static inline void trace_(char *fmt, ...) __attribute__((format(printf, 1, 2))); static inline void trace_(char *fmt, ...) { va_list ap; fprintf(stdout, "[debug] "); va_start(ap, fmt); vfprintf(stdout, fmt, ap); va_end(ap); fprintf(stdout, "\n"); fflush(stdout); } static void (*trace_cb_)(char *fmt, ...) = trace_; void dcpu16_trace_cb_set(void (*fn)(char *fmt, ...)) { trace_cb_ = fn; } /* value_decode_ * sets *v to be the destination of the value * workv is buffer to use to accumulate literal value before use * returns true if destination points to literal (id est *v should ignore writes) */ static unsigned int value_decode(struct dcpu16 *d, WORD value, WORD *work_v, WORD **v) { WORD nextword; unsigned int retval = 0; assert(value <= 0x3f); /* does this value indicate a literal */ if (value >= 0x1f) retval = 1; /* if we're skipping this instruction, just advance the pc if needed */ if (d->skip_) { TRACE(">> SKIP decode"); if (value == 0x1e || value == 0x1f) d->pc++; return retval; } if (value <= 0x07) { /* register */ *v = d->reg + value; TRACE(">> %c (0x%04x)", regnames_[value], **v); } else if (value <= 0x0f) { /* [register] */ *v = &(d->ram[ d->reg[(value & 0x07)] ]); TRACE(">> [%c] [0x%04x] (0x%04x)", regnames_[value&0x07], d->reg[value&0x07], **v); } else if (value <= 0x17) { /* [next word + register] */ nextword = d->ram[ d->pc++ ]; d->cycle++; *v = &(d->ram[ nextword + d->reg[(value & 0x07)] ]); TRACE(">> [nextword + %c] [0x%04x + 0x%04x] (0x%04x)", regnames_[(value & 0x07)], nextword, d->reg[(value & 0x07)], **v); } else switch (value) { case 0x18: /* POP / [sp++] */ *v = &(d->ram[ d->sp++ ]); TRACE(">> POP [0x%04x] (0x%04x)", d->sp - 1, **v); break; case 0x19: /* PEEK / [sp] */ *v = &(d->ram[ d->sp ]); TRACE(">> PEEK [0x%04x] (0x%04x)", d->sp, **v); break; case 0x1a: /* PUSH / [--sp] */ *v = &(d->ram[ --d->sp ]); TRACE(">> PUSH [0x%04x] (0x%04x)", d->sp + 1, **v); break; case 0x1b: /* SP */ *v = &(d->sp); TRACE(">> SP (0x%04x)", **v); break; case 0x1c: /* PC */ *v = &(d->pc); TRACE(">> PC (0x%04x)", **v); break; case 0x1d: /* O */ *v = &(d->o); TRACE(">> O (0x%04x)", **v); break; case 0x1e: /* [next word] / [[pc++]] */ nextword = d->ram[ d->pc++ ]; d->cycle++; *v = &(d->ram[ nextword ]); TRACE(">> [nextword] [0x%04x] (0x%04x)", nextword, **v); break; case 0x1f: /* next word (literal) / [pc++] */ nextword = d->ram[ d->pc++ ]; d->cycle++; *work_v = nextword; *v = work_v; TRACE(">> nextword (0x%04x)", **v); break; default: /* 0x20-0x3f: literal values 0x00-0x1f */ *work_v = value & 0x1f; *v = work_v; TRACE(">> literal (0x%04x)", **v); } return retval; } #define OPCODE_BASIC_BITS (4) #define OPCODE_BASIC_SHIFT (0) #define OPCODE_NBI_BITS (6) #define OPCODE_NBI_SHIFT (4) #define OPCODE_FUTURE_BITS (16) #define OPCODE_FUTURE_SHIFT (10) #define OPCODE_NAME_LEN 16 struct opcode_entry { unsigned short value; char name[OPCODE_NAME_LEN]; void (*impl)(struct dcpu16 *, WORD, WORD); }; /* messy boilerplate for opcode handlers */ #define OP_IMPL(x) static void op_##x(struct dcpu16 *d, WORD val_a, WORD val_b) #define OP_NBI_ (void)val_b, (void)b #define OP_BASIC_ (void)value_decode(d, val_b, &d->reg_work_[0], &b) #define OP_TYPE(op_type) WORD *a, *b;\ unsigned int lit_a;\ do {\ lit_a = value_decode(d, val_a, &d->reg_work_[0], &a);\ op_type;\ if (d->skip_) {\ TRACE("++ SKIPPED");\ d->skip_ = 0;\ return;\ }\ } while (0) #define OP_BASIC(x) OP_TYPE(OP_BASIC_) #define OP_NBI(x) OP_TYPE(OP_NBI_) /* extended opcodes */ /* N.B. this next function currently decodes values -- id est, it is an opcode processing terminus; however, if 'future instruction set expansion' happens, this will probably need to behave more like the OP_IMPL(_nbi_) function which invoked it, if those instructions have zero or differently styled operands. */ OP_IMPL(nbi__reserved_) { OP_NBI(nbi__reserved_); /* reserved for future expansion */ WORD future_opcode = (d->ram[d->pc] >> OPCODE_FUTURE_SHIFT); WARN("reserved future opcode 0x%04x invoked", future_opcode); } OP_IMPL(nbi_jsr) { OP_NBI(nbi_jsr); /* pushes the address of the next instruction to the stack, then sets PC to a */ d->ram[ --d->sp ] = d->pc; d->pc = *a; d->cycle += 2; } OP_IMPL(nbi__reserved2_) { OP_NBI(nbi__reserved2_); /* reserved */ WARN("reserved nbi opcode invoked"); } static const struct opcode_entry opcode_nbi_entries[] = { {0x0, "(reserved)", op_nbi__reserved_}, {0x1, "JSR", op_nbi_jsr}, {0x2, "(reserved)", op_nbi__reserved2_}, {0x0, "", NULL} }; #define OPCODE_NBI_MAX (((sizeof(opcode_nbi_entries)) / (sizeof(struct opcode_entry))) - 1) /* basic opcodes */ /* N.B. the following function does not decode values, as the nbi instructions only have one operand. */ OP_IMPL(_nbi_) { /* non-basic instruction */ /* don't do normal value decoding here */ WORD nbi_opcode = val_a; const struct opcode_entry *e = opcode_nbi_entries; e = opcode_nbi_entries + ( (nbi_opcode < OPCODE_NBI_MAX) ? nbi_opcode : (OPCODE_NBI_MAX - 1) ); assert(e->impl != NULL); TRACE(">> %s 0x%04x", e->name, val_b); e->impl(d, val_b, 0); } OP_IMPL(set) { OP_BASIC(set); /* sets a to b */ /* only set non-literal target */ if (val_a < 0x1f) { *a = *b; } d->cycle += 1; } OP_IMPL(add) { OP_BASIC(add); /* sets a to a+b, sets O to 0x0001 if there's an overflow, 0x0 otherwise */ unsigned int acc = *a + *b; if (val_a < 0x1f) { *a = acc; } d->o = acc >> 16; d->cycle += 2; } OP_IMPL(sub) { OP_BASIC(sub); /* sets a to a-b, sets O to 0xffff if there's an underflow, 0x0 otherwise */ unsigned int acc = *a - *b; if (val_a < 0x1f) { *a = acc; } d->o = acc >> 16; d->cycle += 2; } OP_IMPL(mul) { OP_BASIC(mul); /* sets a to a*b, sets O to ((a*b)>>16)&0xffff */ unsigned int acc = *a * *b; if (val_a < 0x1f) { *a = acc; } d->o = acc >> 16; d->cycle += 2; } OP_IMPL(div) { OP_BASIC(div); /* sets a to a/b, sets O to ((a<<16)/b)&0xffff. if b==0, sets a and O to 0 instead. */ if (*b == 0) { if (val_a < 0x1f) { *a = 0; } d->o = 0; } else { unsigned int acc = *a / *b; if (val_a < 0x1f) { *a = acc; } acc = (*a << 16) / *b; d->o = acc; } d->cycle += 3; } OP_IMPL(mod) { OP_BASIC(mod); /* sets a to a%b. if b==0, sets a to 0 instead. */ if (*b == 0) { if (val_a < 0x1f) { *a = 0; } } else { if (val_a < 0x1f) { *a = *a % *b; } } d->cycle += 3; } OP_IMPL(shl) { OP_BASIC(shl); /* sets a to a<>16)&0xffff */ unsigned int acc = *a << *b; if (val_a < 0x1f) { *a = acc; } d->o = acc >> 16; d->cycle += 2; } OP_IMPL(shr) { OP_BASIC(shr); /* sets a to a>>b, sets O to ((a<<16)>>b)&0xffff */ unsigned int acc = *a >> *b; if (val_a < 0x1f) { *a = acc; } d->o = (*a << 16) >> *b; d->cycle += 2; } OP_IMPL(and) { OP_BASIC(and); /* sets a to a&b */ if (val_a < 0x1f) { *a = *a & *b; } d->cycle += 1; } OP_IMPL(bor) { OP_BASIC(bor); /* sets a to a|b */ if (val_a < 0x1f) { *a = *a | *b; } d->cycle += 1; } OP_IMPL(xor) { OP_BASIC(xor); /* sets a to a^b */ if (val_a < 0x1f) { *a = *a ^ *b; } d->cycle += 1; } OP_IMPL(ife) { OP_BASIC(ife); /* performs next instruction only if a==b */ if (*a == *b) { /* */ } else { d->skip_ = 1; d->cycle++; } d->cycle += 2; } OP_IMPL(ifn) { OP_BASIC(ifn); /* performs next instruction only if a!=b */ if (*a != *b) { /* */ } else { d->skip_ = 1; d->cycle++; } d->cycle += 2; } OP_IMPL(ifg) { OP_BASIC(ifg); /* performs next instruction only if a>b */ if (*a > *b) { /* */ } else { d->skip_ = 1; d->cycle++; } d->cycle += 2; } OP_IMPL(ifb) { OP_BASIC(ifb); /* performs next instruction only if (a&b)!=0 */ if ((*a & *b) != 0) { /* */ } else { d->skip_ = 1; d->cycle++; } d->cycle += 2; } static const struct opcode_entry opcode_basic_entries[] = { {0x0, "(nbi)", op__nbi_}, {0x1, "SET", op_set }, {0x2, "ADD", op_add }, {0x3, "SUB", op_sub }, {0x4, "MUL", op_mul }, {0x5, "DIV", op_div }, {0x6, "MOD", op_mod }, {0x7, "SHL", op_shl }, {0x8, "SHR", op_shr }, {0x9, "AND", op_and }, {0xa, "BOR", op_bor }, {0xb, "XOR", op_xor }, {0xc, "IFE", op_ife }, {0xd, "IFN", op_ifn }, {0xe, "IFG", op_ifg }, {0xf, "IFB", op_ifb }, {0x0, "", NULL } }; void dump_value(WORD value, WORD nextword) { if (value < 0x07) { printf(" %c", regnames_[value]); } else if (value < 0x0f) { printf(" [%c]", regnames_[value & 0x07]); } else if (value < 0x17) { printf(" [0x%04x + %c]", nextword, regnames_[value & 0x07]); } else switch (value) { case 0x18: printf(" POP"); break; case 0x19: printf(" PEEK"); break; case 0x1a: printf(" PUSH"); break; case 0x1b: printf(" SP"); break; case 0x1c: printf(" PC"); break; case 0x1d: printf(" O"); break; case 0x1e: printf(" [0x%04x]", nextword); break; case 0x1f: printf(" 0x%04x", nextword); break; default: printf(" 0x%02x", value - 0x20); } } void dcpu16_disassemble_print(struct dcpu16 *d, WORD addr) { WORD opcode, a, b; unsigned int instr_len = 1; const struct opcode_entry *e; opcode = (d->ram[addr] >> OPCODE_BASIC_SHIFT) & ((1 << OPCODE_BASIC_BITS) - 1); a = (d->ram[addr] >> (OPCODE_BASIC_SHIFT + OPCODE_BASIC_BITS)) & ((1 << 6) - 1); b = (d->ram[addr] >> (OPCODE_BASIC_SHIFT + OPCODE_BASIC_BITS + 6)) & ((1 << 6) - 1); assert(opcode <= 0x0f); assert(a <= 0x3f); assert(b <= 0x3f); printf(" next instr 0x%04x: %04x", addr, d->ram[addr]); if (opcode != 0) { if (a == 0x1e || a == 0x1f) { printf(" %04x", d->ram[addr + instr_len]); instr_len++; } } if (b == 0x1e || b == 0x1f) { printf(" %04x", d->ram[addr + instr_len]); instr_len++; } if (opcode) e = opcode_basic_entries + opcode; else e = opcode_nbi_entries + ( (a < OPCODE_NBI_MAX) ? a : (OPCODE_NBI_MAX - 1) ); printf("%s%s ; %s", instr_len < 3 ? " " : "", instr_len < 2 ? " " : "", e->name); if (opcode != 0) { dump_value(a, d->ram[addr + 1]); if (a == 0x1e || a == 0x1f) addr++; printf(","); } dump_value(b, d->ram[addr + 1]); printf("\n"); } void dcpu16_step(struct dcpu16 *d) { WORD opcode; WORD val_a, val_b; const struct opcode_entry *e; /* decode opcode and invoke */ opcode = (d->ram[ d->pc ] >> OPCODE_BASIC_SHIFT) & ((1 << OPCODE_BASIC_BITS) - 1); val_a = (d->ram[d->pc] >> (OPCODE_BASIC_SHIFT + OPCODE_BASIC_BITS)) & ((1 << 6) - 1); val_b = (d->ram[d->pc] >> (OPCODE_BASIC_SHIFT + OPCODE_BASIC_BITS + 6)) & ((1 << 6) - 1); d->pc++; for (e = opcode_basic_entries; e->impl; e++) { if (e->value == opcode) { TRACE(">> %s 0x%04x, 0x%04x", e->name, val_a, val_b); e->impl(d, val_a, val_b); break; } } } void dcpu16_state_print(struct dcpu16 *d) { unsigned int i; printf("---- cycle:0x%08llx %2s:0x%04x %2s:0x%04x %2s:0x%04x\n", d->cycle, "PC", d->pc, "SP", d->sp, "O", d->o); printf(" "); for (i = 0; i < 8; i++) printf(" %c:0x%04x", regnames_[i], d->reg[i]); printf("\n"); } void dcpu16_dump_ram(struct dcpu16 *d, WORD start, WORD stop) { unsigned int i, j; const unsigned int n = 8; /* words per line */ for (i = start, j = 0; i <= stop; i++, j++) { if (j % n == 0) printf("0x%04x:\t", i); printf(" %04x%s", d->ram[i], (j % n) == (n - 1) ? "\n" : ""); } } /* dcpu16_new * allocate a new dcpu16 instance */ struct dcpu16 *dcpu16_new(void) { struct dcpu16 *vm; vm = calloc(1, sizeof *vm); if (vm == NULL) WARN("%s: %s(%zu): %s", __func__, "calloc", strerror(errno)); return vm; } /* dcpu16_delete * release a dcpu16 instance */ void dcpu16_delete(struct dcpu16 **vm) { free(*vm); *vm = NULL; }